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SUMMARY 
L 

A prototype Propellant Leakage Detection System (PLDS) has been developed 

Spacelabe for use with bi-propellant reaction control systems. This system 

was developed under Contract NAS 9-3427 and was delivered to NASA/MSC. 

The PLDS consists of two sensors and an electronic package. One of the iensors 

is u8ed to detect propellant leaks in the range from 10 cc/hour to 10,000 cc/hour. ; 

The other sensor operates in the range from 1000 cc/hour to 2 x 10 cc/hour, 

The electronic package provides power and signal conditioning f o r  the sensors. 

i 
i 

6 
/ 

A test unit was included to facilitate testing of the PLDS. The test unit includes 

a pilot light for the 28 volt power, a high and low range selector switch, a leak 

alarm indicator light, and test points for monitoring the performance of the PLD a \ coanpanents. The development of the prrrtntypn Pr-ells=+ L - ~ Y I U ~ - d  a-t Y Y C Y C U W  nA&a..h;.... 

System clearly shows that the design and production of optimized systems for 

flight use is feasible. Figures 1 and 2 show the Propellant 

System and test unit. 

The experimental program was concerned primarily with development of the flow 

sensors. Conventional electrothermal flow measuring techniques were investi- 

gated and found unsuitable for measuring leakage flow rates of 25 cc/hour. The 

corrosive nature of the oxidizer, (nitrogen tetroxide), and the thermal hstability 

of the fuel (hydrazine) made absolute sealing of the transducers necessary. Af te r  

an extensive experimental program, a low flaw sensor was devised based on a 

thermally symmetrical differential temperature measurement technique. A 

high flow sensor which measures the local heat transfer coefficient on a sub- 

merged cylinder was developed for high range leak measurement for O/F 

monitoring. 

V 
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' .  
The final configuration of the flow sensors consists of a stainless rteel tube 0.6 

hches in diameter welded into aa outer housing. Standard 3/4-inch fittings are 

machined on each end of the housing. Smaller stainless steel tubes are  mounted 

across the main flow tube. 

sensor. They contain a heater and two thermistors and are  secured in place by 

There are three of these smaller tubes in each 

weldments . 
Evaluation tests conducted OR the prototype hardware indicate that the system 

may readily be developed in final form to meet or exceed all performance 

requirements. The transient response and sensitivity of the prototype hardware 

are much better than required. i 
I 

v i  
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I INTRODUCTION 

Space vehicle reaction control systems require monitoring of the propetlant flow, 

Propellant leakage of extremely s m a l l  magnitude can exhaust the propellant 

supply during an extended space miesion. A system failure such as valve mal- 

function or line rupture could result in the loss of a significant quantity of pro- 

pellant in a matter of seconds, Either of these problems might be corrected by 

emergency procedures if prompt action were undertaken. A suitable propellant 

monitoring system would detect extremely small leakage rates and would indicate 

the presence of unusually high propellant utilization rates requiring immediate 

attention, A further desirable characteristic in a propellant monitoring system 

would be the ability to detect abnormal O/F ratio during operation of the reaction 

control system. 

The leakage detection problem differs markedly from ordinary flow measurement, 

The leakage flow velocities a re  extremely small, Normal flow velocities gener- 

ally lie between 0.1 ft/sec and 10 ftleec. In contrast, at  20 cc/hour the f b w  

velocity through a pipe 0.6" in diameter is lom4 ft lsec,  or  1/3 ft/hour. A cor- 

responding dynamic head is 1.6 x 10-l' ft, 

tional flow measurement techniques. 

.\ 
This is far  below the range of conven- 

Another problem arises from the corrosive nature of the propellants. Nitrogen 

tetroxide is an extremely active oxidieer which attacks all but a few materials of 

construction, Hydrazine and its derivatives a re  thermally unstable and are  BUS- 

ceptible to catalytic decomposition. They can be permitted contact with only a 

limited group of materials. 

1 - 1  
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The problems of propellant monitoring for a eeaction control system led to a pro- 

gram directed at feasibility investigation and development of a suitable Propellant 

Leakage Detection Systemr This program was undertaken under NASA Contract 

NAS 9-3427 between the NASAIManned Spacecraft Center and Spacelabs, Inc. The 

objectives of the program are  set forth in Section IL The development program is 

outlined in Section IU The design and fabrication of the final hardware a re  des- 

cribed in Section IV. The results of evaluation tests of the prototype hardware a re  

presented in Section V. Section VI summariees the findings of the program and 

presents recommendations for future activities. 

i 
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II OBJECTIVES OF THE PROGRAM 

The primary program objective was to develop and demonstrate the feasibility of 

a prototype Propellant Leakage Detection System, 

generation of sufficient knowledge to enable the design and fabrication of a full- 

scale optimized system under a later program, The prototype system was to in- 

clude leakage detection devices, control electronics, and a leak alarm sub-system. 

The system requirements a re  presented in Exhibit A of Contract NAS 90.3427~ and 

are  summarized below. 

The program was aimed at the 

A, Reaction Control System Characteristics 

A typical reaction control system is shown in Figure 3. It consists of a propellant 

supply system, a propellant leakage detection system, and a number of rocket 

motor assemblies. 

hydrazine family of fuels. 

(MMH), and unsymmetrical dimethyl hydrazine (UDMH). 

The propellants a re  nitrogen tetroxide and members of the 

These include hydrazine, manomethyl hydrazine 

The operating pressure level of the system ranges from 100 to 300 psi. 

operating temperatures a re  from 20' F to 85%. 

0.22 #/see to 0.88 #/sec for oxidizer, and from 0.11 #/sec to 0.44 #/sec for 

fuel. 

oxidizer and 5/8-inch for the fuel. 

Normal 

Normal flow rates range from 

The nominal O/F is 2.0. Nominal line diameters are  3/4-inch for the 

Two modes of thrust chamber operation are used. In the steady mode, the engine 

may fire continuously for up to 10 minutes. In the pulse mode, the engine operates 

in pulses as short as 20 milliseconds. 

II- 1 
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B. Propellant Leakage Detection System Characteristics 

The performance requirements for the Propellant Leakage Detection System 

include low flow leakage detection, high flow leakage detection, and flow 

monitoring. 

Low Flow System 

The low flow detection system is intended for intermittent operation. When- 

ever it is desired to check for low flow leakage, the low flow system will  

be activated. The system must indicate the presence of any leakage rate 

between the threshold of the low flow system and the threshold of the high 

flow system. The threshold of the low flow system is 25 cc/hour for the 

fuel and 35 cc/hour for the oxidizer. The allowable power consumption 

for the low flow system is 25 watts of 28 volt d, C. power during the 

10 minute operating period. 

High Flow System 

The high flow warning system is intended for  continuous operation (except 

during low flow leakage checks). It is to provide a warning in the event of 

a malfunction which requires immediate attention. When the RCS is not 

operating, such a malfunction is defined as a leakage rate exceeding 

1350 cc/hour of fuel o r  1700 cc/hour of oxidizer. 

a leak before 66 cc of fuel or 75 cc of oxidizer have passed the detector. 

It must respond to such 

The high flow system should also provide an alarm when the RCS is 

operating and the O/F ratio falls outside of the range from 1.0 to 2.0. 

The power used by the high flow system is not to exceed 5 watts. 

General Characteristics 

The PLDS must be integrated into the propellant lines of the reaction 

I I - 2  
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control system so as to cause no interference with normal operation, The 

materials of the PLDS sensors must be compatible with the propellants. 

The flow sensing elements must introduce a pressure drop less than 1% of 

system operating pressure at the maximum expected flow rates. The 

system must provide high reliability and must be fail-safe with respect to 

the reaction control system. No failure in the PLDS can compromise the 

reliability of the reaction control system. 

C. Environment 

The PLDS must operate in the same environment as the RCS. The environmental 

requirements for the system a re  presented in Appendix A, These include accele- 

ration up to 8.5 G, 

normal radiation requirements for interplanetary space travel. 

warning system w--U be used when the attitude control system is firing and angular 

acceleration of the spacecraft may occur. For  use of the low flow warning system, 

shock up to 15 G, random and sinusoidal vibration, and 

The high flow 

external disturbances to the system will be minimized. 

factors outlined in Appendix A do not form specific requirements for the bread- 

The environmental 

board hardware which was delivered under the present program, Testing was 

limited to successfully demonstrating the feasibility of future development of 

qualified hardware . 

f f - 3  
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IR LEAK METER DEVELOPMENT PROGRAM 

Following receipt of the contract, a development program was initiated to meet 

the contract requirements. Consideration was given to the use of standard elec- 

trothermal flowmeter techniques, Spacelabs, Inc. has for a number of years 

developed and manufactured electrothermal flowmeters which rely on the measure- 

ment of wall heat transfer in a tube. This is done by measuring the electrical 

power required to maintain a portion of the tube a fixed temperature difference 

above the incoming stream. This type of flow sensor has proved very satisfactory 

for relatively low flow measurements in the past. 

A closer examination of the requirements revealed some problem areas. 

peared that the power consumption w a s  too high at the flow rates encountered 

during high flow monitoring. The design of conventional electrothermal flow- 

meters could not easily be modified for propellant compatibility. Calibration 

It ap- 

difficulties were expected at the low flow threshold. Heat leakage due to conduc- 

tion and free convection would tend to completely dominate the leakage signal 

under ground testing conditions even though the problems of free convection would 

disappear in space. Preliminary water flow tests conducted with Spacelabs' flow- 

meters confirmed the existence of these problems and led to a search for more 

suitable low flow measuring techniques. 

The solution to the problems discussed above lay in two different directions, At 

high flow rates, the primary problem was one of reducing the magnitude of the 

power required while simultaneously providing isolation of the electrical elements 

from the propellants. 

heat source which could be inserted into the stream to provide a significant tem- 

perature signal at a reduced power level. 

The solution to these problems was the use of a smaller 

The solution to the low flow sensing 

III- 1 
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problem was a system which in ground calibration and checkout would be sensitive 

only to the leakage flow. Such a goal could be achieved by the use of two sensors 

arranged to provide thermal symmetry for all  effects except those due to flow. 

These initial concepts led to a combined analytical and experimental investigation 

which ultimately resulted in the development of satisfactory low flow and high 

flow sensors. 

A number of analytical studies were conducted during the PLDS development pro- 

gram. The most significant of these studies are attached to this report in Appen- 

dix C. The first of these was concerned with an evaluation of the heated wall 

flowmeter for application to the Propellant Leak Detection System. 

became apparent that power consumption at RCS flow rates would be excessive 

while the low flow signal might be dominated by stray heat losses, an analysis was 

conducted of a thermal differential transducer using temperature sensors and a 

heat source submerged in the fluid, This analysis indicated that a satisfactory 

low flow sensor could be developed utilizing this technique. 

indicated that a thermal differential sensor would not be suitable for O / F  moni- 

When it 

The analysis also 

toring. 

The high flow sensor developed is identical in principle to Spacelabs' heated wall 

flowmeters. The primary difference is that the PLDS high flow sensor measures 

the heat transfer coefficient at the leading edge of a small cylinder while the 

heated wall meter measures the heat transfer coefficient at the wall of the main 

flow tube. 

duced compared to the heated wall system. 

between propellant flow rates and equivalent water flow rates was performed to 

determine the range of water flows to be used in system evaluation testing. 

The total heated area exposed in the cross tube sensor is greatly re- 

An analysis of the conversion factors 

I I I - 2  
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The details of the experimental program directed at the development of the sensors 

a re  presented in Appendix B. The first configuration tested was found inadequate 

because of the low temperature rise achieved at the sensors. 

using self-heated thermistors w a s  considered and preliminary heat transfer tests 

with single thermistor beads were conducted. The results of these tests showed 

The possibility of 

two interesting features. At higher flow rates, the thermistor beads behaved as 

predicted by laminar flow heat transfer theory. However, at very low velocities, 

heat transfer from the beads was controlled by free convection. The free convec- 

tion was found to greatly reduce the temperature of the sensors when they were 

placed too far from the heat source. In subsequent tests, the sensors were 

moved closer to the heat source and the heater power was increased, It w a s  felt 

that the thermal differential sensor would meet the PLDS requirements if some 

means could be found for encapsulating the flow elements to remove them from 

contact with the stream. This led to the first cross-tube thermal differential 

flowmeter tests. These were extremely encouraging and indicated an adequate 

signal level at the low flow threshold. Further tests of the cross-tube flowmeter 

clearly indicated that this should be the system used for low flow leak detection. 

The performance of the thermal differential flowmeter at high flows was as ex- 

pected. The flowmeter provided an adequate signal at the threshold of the high 

flow warning system. 

effect of the fluid lowered the heater temperature. 

The signal then decreased at higher flows as the cooling 

Preliminary high flow tests were conducted using a heated wall meter very 

similar to the "standard" Spacelabs flowmeter. 

sensor provided a good flow measurement, but (as had previously been determined 

analytically) the power input required at high flows was excessive. 

high flow configuration tested was a three-element cross-tube system in which 

The tests indicated that the 

The final 
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the elements of the heated wall  sensor were replaced by corresponding elements 

in the cross-tubes. The upstream sensor was replaced by an upstream tube con- 

taining a bead thermistor. 

a heating element in a cross-stream tube. 

the heated wall was replaced by a temperature sensing element in a cross-stream 

tube which was thermally and mechanically bonded to the upstream edge of the 

heating element tube. This configuration was found to give far greater sensitivity 

at much lower input powers than the heated wall sensor. It could d S 0  be easily 

fabricated in a propellant compatible version. This configuration was therefore 

selecSed as the one to be used for the flow sensor. Figure 4 shows some of the 

breadboard sensors tested in the course of the experimental program. After the 

preliminary screening experiments had led to a selection of sensors for the low 

flow and high flow requirements, an experimental test item was fabricated which 

contained low flow and high flow sensing elements in a 3/4-inch diameter stain- 

less steel tube. Tests were conducted in the water flow facility using both low 

temperature and high temperature water to examine the effect of changing fluid 

properties on the performance of the sensors. The high flow performance was 

relatively unaffected by changes in fluid temperature. The low flow sensor 

showed a drop in sensitivity at high fluid temperatures. 

change in free convection characteristics within the sensor and will be much less 

pronounced under zero-G conditions. 

effects of free convection and fluid temperature on the behavior of the low flow 

sensor. At low heater power, increasing the heater power provided increased 

sensitivity at  low flow rates. As the heater power w a s  further increased, the 

sensitivity reached a maximum and began to drop. This was found to be due to 

f ree  Convection around the heater element. 

The heating element around the wall was replaced by 

The temperature sensing element at 

This was due to the 

Particular attention w a s  directed at the 

When the vertical free convection 
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. velocity around the heater element is comparable in magnitude to the flow velocity, 

the sensitivity of the instrument begins to fall. As the velocities associated with 

free convection a re  increased by increasing heater power, the sensitivity of the 

instrument decreases rapidly, The presence of these free convection effects 

tends to degrade the sensor performance. The zero leakage indication is unaf- 

fected by convection because of the symmetry of the instrument, However, the 

sensitivity at low nawrateaie._~ea~~-_reduced, This is undesirable because- - 

sensors a re  most easily evaluated in a normal 1 G environment. 

Minimization of free convection phenomena was achieved by use of flow baffles 

parallel to the normal flow direction. These baffles interfere with the convection 

eddies and break up the free convection process. A number of fairly elaborate 

baffle configurations were considered and discarded in favor of an extremely 

simple V baffle which was tested and adopted for the final model. With  the V 

baffle in place, the sensitivity of the instrument near the low flow threshold was 

greatly increased. 

The f inal  design of the pr  

scribed in Section IV of this 

in Section V and indicate 

- 

w sensors and electronic circuitry is de- 

.- Tests of the complete system are described 

Q program was successful. 
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IV DESIGN OF FINAL HARDWARE 

A. Sensor De sign 

One of the major objectives of the experimental program was the development of a 

flow measuring technique in which all the sensor components could be enclosed by 

stainless steel. 

success of this facet of the experimental program. Although the sensing elements 

for both high range and low range operation could be housed in a single sensing 

package, (as they were in the f inal  experimental transducer tested), it was decided 

The final transducers were designed to take advantage of the 

to fabricate separate low and high range transducers to provide versatility and to 

simplify manufacturing and testing. Both transducers were fabricated from type 

304 stainless steel with all internal joints welded together. 

technique was selected after material studies had pointed out the unavailability of 

any completely satisfactory non-metallic sealing materials. 

This construction 

The designs for the transducers are shown in Figures 5 through 8. 

ducers consist of an inner tubing assembly and an outer housing, 

assembly consists of a 5/8" outer diameter, 0.020 wall welded and drawn tube in 

which smaller tubes containing the heaters and thermistors a re  mounted across 

the stream. 

of the 5 /8"  tube. Some initial difficulty in making suitable welds by standard a rc  

welding techniques was circumvented by employing laser welding. Figures 9 and 

10 show the partially assembled low and high range transducers. The laser welds 

are visible through the circular holes in the outer housings. 

The trans- 

The inner tubing 

The smaller tubes a re  held in place by welding their ends to the walls 

After welding the inner tubing assemblies together, they were slipped into the 

outer housing and welded in place using the tungsten-inert gas process. Figure 11 

IV - 1 
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shows a typical transducer end before and after applying the weld. The tubing end 

weldments complete the sealing of the transducers so that the propellant carrying 

portion is completely surrounded by a welded boundary of type 304 stainless steel, 

The heater resistors and 

transducers. The glass-sea ermistor probes were cast into thermally con- 

ductive epoxy plugs which snugly f i t  the bore of the cross-stream tubes. The 

thermistors were then pressed into place and retained with a small spot of epoxy. 

s were then prepared for insertion in the 

The heater resistor was located in place and potted at both ends with silicone oil 

between the potted ends thermal contact. This approach was used 

so that the trans ily repairable. Flight type transducers will 

8 permanently bonded in place with epoxy. The 

en resistance welded to nickel ribbons which 

r. The electrical connector w a s  a Physical 

Sciences type BL02SM and had a type 304 stainless steel body and gold-plated 
.* 

stainless steel pins. 

by silico-ceramic inserts. * 

The pi& are individually insulated from the connector body 

Figure 12 shows the electrical connector, a typical thermistor, the two sizes of 

cross-stream tubes-and the connector mounting hole of the low range transducer. 

The electrical connector was welded in place using the tungsten-inert gas process. 

Convection baffles were fabricated from 0.01'' thick type 301 stainless steel sheet, 

They were pressed in place in the transducers delivered but will be spot-welded 

in flight versions of the transducers. 

range transducers with the convection baffles in place. The cross-stream tubing 

assemblies and circumferential weldments holding the inner tubing assemblies to 

Figure 13 is an end view of the low and high 
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the housings a re  also clearly visible. 

in two pieces from type 304 stainless hexagonal bar stock. 

The transducer cases were each machined 

The two pieces were 

provided with mating ring and groove joining surfaces and were heliarc welded 

together before finish machining. 

B. Electronic System 

The electronic system furnished with the transducers consists of a Propellant 

Leakage Detection System (PLDS), and a PLDS Test Unit. The PLDS contains the 

transducer signal amplifier, leakage threshold detector, leak alarm logic, and 

power supply circuitry. 

tion and leak indication circuitry and was provided to facilitate testing of the 

PLDS. 

The PLDS Test Unit contains range switching, calibra- 

Figure 14 is a block diagram of the PLDS. 

unbalance in response to flow. 

The transducer provides a bridge 

The bridge output signal is first amplified and 

then operates a threshold indication circuit consisting of a bi-stable amplifier. 

The resulting indication of leakage above the threshold level is connected to the 

logic circuitry which provides an output when the leak represents a malfunction 

condition. The logic required to perform this function was derived from the re- 

quirements for the low and high range systems as  follows: 

1. The alarm shall light during low range operation if the fuel or 

oxidizer flow is above the threshold, and the RCS is not energized. 

2. The alarm shall light during high range operation if the fuel or  

oxidizer flow is above the threshold level and the RCS is not 

energized, or  if either fuel or oxidizer flow is above the threshold 

level and the O / F  ratio differs from 2.0 by more than 5070. 
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These two requirements can be expressed as logical equations using the folLowing 

notation: 

A1 - Low range alarm lights 

Ah - High range alarm lights 

R - Reaction Control System is energized 

Lo - Oxidizer flow above low threshold 

Lf - Fuel flow above low threshold 

H - Oxidizer flow above high threshold 

Hf - Fuel flow above high threshold 

2 - O / F  ratio differs from 2.0 by more than 50% 

0 

The logical equations are: 

A1 = R e  - (Lo + Lf) 

Ah B (Ho +Hf)  t (Ho +Hf)  

Figure 15 shows the logic for the high range alarm signal in Veitch diagram form. 

(The low range logical equation is already in the simplest two-level form.) The 

maxterm mechanization of the high range logic is the simplest and is given by: 

Ah = (R + 2) (Hf -k Ho) 

The equation above indicates that the malfunction indication is desired if either 

the fuel or the oxidieer flow rate is above the high flow threshold and at the same 

time the RCS signal is absent or the utilization rates of fuel and oxidizer a re  in 

the wrong ratio. 

Figure 16 is a block diagram of a PLDS which performs this function. The 

system delivered did not include separate fuel and oxidizer systems. The logical 
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equations were therefore simplified to: 

A 1 = a * L  - 
A h = R * H  

Where L and H represent the condition of leakage above the low and high threshold 

levels, respectively. 

The prototype PLDS used the same electronic system for both low and high range 

operation. 

Unit. 

The mode of operation was selected by a switch on the PLDS Checkout 

The high and low range logical equations were combined in the form: 

A = a * T  

Where A is the alarm indication and T represents flow rates above the threshold 

level. 

The prototype PLDS was constructed using monolithic integrated silicon ampli- 

f iers and logic elements. Figure 17 ie a photograph showing the components of 

the PLDS mounted on the epoxy-glass circuit board in the aluminum outer case. 

The electrical connections on the prototype PLDS were made by point-to-point 

wiring on the reverse side of the circuit board. 

The metal film resistors and monolithic silicon electronic devices used in the 

PLDS a r e  similar to those currently in use on the Apollo and LEM Programs and 

were selected to provide the reliability and environmental resistance needed for 

spacecraft electronic equipment. 

Figures 18 through 20 are  schematic diagrams of the PLDS Test Unit. 

Test Unit contains circuitry to select either the high o r  low range transducer for 

input to the PLDS, a calibration circuit for connecting resistors across the 

The PLDS 
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thermistor sensing elements for calibration, a power indicator light, a number 

of test points for monitoring the performance of the PLDS components and a leak 

alarm indicator and indicator lamp driving circuitry. 

The test points make it possible to monitor the 28 volt supply voltage (after the 

protective diode), the 6 and 18 volt internal PLDS power supply voltages and the 

output signals of the proportional amplifier, the bi-stable amplifier, and the 

logic circuitry. 

ment of flow rate for later use in O/F monitoring and propellant management 

schemes . 

The proportional amplifier output provides an analog measure- 

C. Sys tem Characteristics 

The prototype PLDS delivered consisted of a high range transducer, a low range 

transducer, a PLDS electronic system and a PLDS checkout unit. The high and 

low range transducers could be contained in a single package in future systems 

but were separated for manufacturing and testing reasons in this development 

program. 

respectively, and the electronic system weighed 346 grams. All these weights 

could be considerably reduced without sacrificing performance in a flight unit. 

The low range and high range transducers weighed 454 and 478 grams, 

The prototype Propellant Leakage Detection System would be capable of operating 

over all applicable Apollo environmental conditions after potting. 

Sensor Design 

The prototype Propellant Leakage Detection System fabricated under this 

program embodies solutions to problems which seemed very difficult at 

the start of the program. 

technique used for  the sensors provides complete protection of the sensing 

The welded stainless steel construction 
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elements from the propellants. Sensors constructed in this manner can be 

used for a wide range of applications to provide flow measurements and 

leakage detection for corrosive fluids. 

makes it suitable for incorporation in space vehicle propellant systems 

without compromising system reliability. The sensor could be installed 

with conventional fittings or  could be designed to be welded in place in the 

propellant system plumbing. 

The rugged simplicity of the design 

The sensor is designed to provide a high level of environmental resistance. 

The structural elements of the transducers have high natural frequencies 

and the joints between the cross-stream tubes and the main flow tube a re  

designed to provide frictional damping to minimize resonant amplification. 

This is a design technique of proven value and has been used to provide 

structural damping in turbojet fuel injection spray bars. The prototype 

sensors delivered at the program end, with the addition of potting com- 

pound to hold the internal wires in place, should easily endure the expected 

vibration levels. 

The thermistors used in the sensors were Victory Engineering Co. 

type 32A129. They are of the bead-in-glass-probe type construction. The 

manufacturer claims that similar thermistors have compiled an aggregate 

of lo8 sensor hours on the Titan I Program without a failure. 

Electronic System Reliability 

The electronic system is designed using high reliability silicon diodes, 

transistors and monolithic integrated silicon amplifiers and logic circuits. 

The resistors used were metal film types that a re  currently also being 

used on the Apollo and Gemini Programs. Table I summarizes the 
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estimated reliability of the components of the PLDS. 

failure rate for the prototype system delivered is 0.408~o0/1000 hours which 

is equivalent to a MTBF of 245,000 hours. The addition of a separate 

system for a second propellant and the extra circuitry for O / F  ratio eval- 

uation might reduce this MTBF to 1001000 hours. 

The estimated 

The thermistors are  inherently radiation-resistant and should be reliable 

and stable in spite of exposure to Van Allen belt levels of radiation. 

Temperature Compensation 

The low range transducer is designed so that it will indicate zero leakage 

correctly independent of fluid temperature,provided the two thermistors 

are well matched. 

to low flows due to the influence of f ree  convection. Since this change in 

sensitivity disappears during actual service in a zero-G environment, it is 

not desirable to provide temperature compensation for it. The tempera- 

ture independence of the low flow zero indication makes ground checkout 

practical and therefore greatly enhances the system utility. 

During ground testing there will be a loss of sensitivity 

The high range transducer tends to provide the same signal at  very high 

flow rates independent of fluid temperature. 

heater temperature is allowed to approach fluid temperature at  high flow 

rates. 

perature and the transducer output becomes independent of temperature 

except for thermal mismatch between the thermistors. 

mismatch w i l l  probably be la rger  in the high flow transducer delivered 

because only one set of factory matched thermistors was available and 

This is true because the 

As this happens, the two thermistors also approach the fluid tem- 

This thermal 
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t '  
this was installed in the low range transducer. 

high range transducer were selected from a number of thermistors on hand 

to provide the best match in room temperature resistance. 

The thermistors in the 

At low flow rates, the changes in fluid properties cause changes in heat 

transfer and therefore in transducer output signal. 

be compensated by adding an extra thermistor in the same tube with the 

upstream sensor. This thermistor would be used to provide an adjustment 

of system sensitivity for temperature. Temperature compensation was not 

provided in the prototype system because of the lack of propellant facilities 

needed to determine the proper compensation and because the uncompen- 

sated performance of the transducers was quite good. 

These changes could 

Power Consumption 

The power required by the prototype PLDS was approximately 1.6 watts. 

This included the 0 . 5  watts supplied to the heater and the power consumed 

by the electronics. The same power consumption applies to both low and 

high flow warning systems. 

the power consumption is higher (about 3 watts) because of the pilot light, 

alarm indicator and range changing circuitry in the checkout unit. 

1.6 watt figure is the actual power consumption of the PLDS. 

When operated with the PLDS checkout unit, 

The 

This could 

be reduced considerably through additional work on the circuitry, such as 

operating the amplifiers at reduced voltage, but this was not done in the 

prototype system. 
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V EVALUATION TESTS 

After  fabrication of the prototype system, a set of evaluation tests was conducted 

to demonstrate that the technical objectives of the program had been met. 

The evaluation tests included investigation of the effects of temperature and posi- 

tion on the performance of the system and determination of the system response 

and warm up times. Figure 21 is a schematic of the evaluation test apparatus. 

Figure 22 shows the system under test. 

Before evaluating the low and high range systems, tests were conducted which 

proved that the power supply voltage could be varied from 24 to 32 volts without 

appreciably affecting system performance. 

Low Flow System Tests 

The low range transducer was installed with its flow axis horizontal and 

with its electrical connector in a horizontal plane. This places the con- 

vection baffles in the most effective orientation. Data were taken of flow 

rate versus output voltage (measured between "Rate" and "Ground") for 

55'F and 90°F water temperatures. 

Figure 23. 

to temperature because of the symmetrical design of the transducer. 

threshold level (at which the 

the figure. 

These data a re  presented in 

It can be seen that the zero leakage indication is insensitive 

The 

light goes on) is also indicated on 

The alarm level varies from 25 to 50 cc/hour over the temperature range. 

This variation is due to the free convection effects discussed previously 

and will not exist during zero-G operations. The test results 

the sensitivity goals for the low range system have been met. 

v -  1 
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Figure 23 also shows the output signal of the low range system at higher 

flow rates. 

until the flow rate reaches 100,000 cc/hour. 

the required 1800 cc/hour upper limit for the low range system. 

It can be seen that the signal stays above the alarm level 

This is considerably beyond 

In Figure 24, the flow rate equivalent to the signal obtained by tilting the 

flow axis of the transducer is plotted against angle of tilt. These data 

provide an indication of leveling requirements during ground testing. 

is seen that the transducer should be leveled within 0. lo of horizontal for 

very critical work. 

It 

Leveling "by eye" is adequate for most testing. 

The response time of the low range system was determined by setting up a 

leak rate of 40 cc/hour and then turning the electrical power on. 

shows the resulting output voltage plotted against time. 

on about 0.7 min after the system is energized. 

10 minute requirement for response time. 

Figure 25 

The alarm goes 

This is well within the 

A leak rate of 800 cc/hour was set up and then suddenly removed to deter- 

mine the time required to reach a zero leak indication after leak removal. 

The output voltage is plotted against time in Figure 26 which shows that the 

zero leak indication is reached within 0. 5 minutes. 

High Flow System Tests 

The high range sensor is designed so that the thermistors operate at dif- 

ferent temperatures at zero flow. 

energized, they a re  at the same temperature. 

output with time after first applying the power is shown in Figure 27. 

can be seen that the alarm is on for the first 0.1 minutes after system 

When the high range system is first 

The variation of system 

It 
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turn-on. 

fully warmed up after two minutes. 

The system will indicate zero leakage after 0.1 minutes and is 

Data were taken of the output of the high range system for both 59O and 90° 

water temperatures. The data are presented in Figure 28. 

The data show that satisfactory leak indication can be obtained over the 

temperature range without temperature compensation. Figure 28 also 

shows the output of the high range system at water flow levels equivalent 

to the full RCS flow rates on a heat transfer basis (see Appendix C). The 

data show the system's ability to respond to high flow rates in spite of the 

fact that the passive heater system trades low power consumption for high 

flow sensitivity. 

pear feasible if both oxidizer and fuel systems were built. 

The construction of an O / F  monitoring system does ap- 

Figure 29 shows the flow error  due to rotation of the flow axis from a 

horizontal to a vertical position. 

ceeds 600 cc/hour even with the flow axis vertical. It does appear desir- 

able to orient the high range transducer axis perpendicular to gravity and 

acceleration directions to minimize calibration changes at low flow rates. 

At higher flow rates there will be no noticeable acceleration effects. 

It can be seen that the error  never ex- 
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VI CONCLUSIONS AND RECOMMENDATIONS 

The program objectives were satisfied and the hardware was delivered on 

schedule. 

System provides a good basis for design of production systems. 

nical problems associated with meeting the specifications have been solved. 

measurement techniques developed in the course of the program cover a much 

wider range of applications than originally envisioned. 

observations a re  summarized below. 

The technology embodied in the prototype Propellant Leakage Detection 

The major tech- 

The 

Some specific significant 

1, 

compatible transducer design configurations which a re  suitable for in- 

corporation in space vehicles without compromising the vehicle reliability. 

These include the design of the low and high flow sensors, the dual range 

sensor in a single housing and the obstructionless high range sensor with 

external windings. All  of these designs are  fully propellant-compatible 

and have no static or dynamic seals. 

The program has produced a number of simple, completely propellant 

2. The transducer configurations developed can be used to make flow 

measurements in many corrosive liquids and gases such as  fluorine, flox 

and other fluids for which no satisfactory flow measurement technique 

presently exists. 

3. 

good performance and reliability in flight vehicle environments. 

portional amplifier, bi- stable amplifier, logic and power supply circuits 

may be combined in a variety of ways to provide different functions such 

as O/F monitoring, flow rate monitoring, leak measurement, leak thresh- 

old detection, etc. 

The circuitry techniques used in the electronic system will provide 

The pro- 
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4. The high flow sensor can be operated with the heater temperature held 

constant by a servo system built around the same type of circuitry used in 

the delivered system. Such a system wi l l  consume more power (but less  

than 5 watts per transducer) and will provide time constants of the order 

of 100 milliseconds. It would be more sensitive at high flow rates because 

the heater temperature would not be allowed to fall. 

5.  

of flight-type Propellant Leakage Detection Systems. 

Sufficient knowledge has been generated to allow design and production 

6. 

a range of low liquid flow rates difficult to instrument with conventional 

transducers such as turbine meters. 

The measurement techniques developed provide good measurements in 
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REVIEW OF THE STATEMENT OF WORK 
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This Appendix relates the accomplishments of the program to the specific re-  

quirements enumerated in the statement of Work. The characteristics of the pro- 

totype PLDS fabricated under this program are  compared with the Work Statement 

goals. 

I Scope 

The Propellant Leakage Detection System desired is a lightweight compact system 

achieving reliability through simplicity and capable of providing detection of both 

extremely small leaks and of unusually high propellant utilization rates. 

system delivered demonstrated the feasibility of accomplishing these goals. 

The 

II System Requirements 

A. Integration Requirements 

1. The PLDS can be integrated into present expulsion systems 

without major alterations to essential components of RCS, PLDS 

or PQGS (Propellant Quantity Gaging System). 

2. 

as part of, the PQGS, 

The PLDS could be designed to function in conjunction with, or 

3. 

for use with nitrogen tetroxide and hydrazine family fuels. 

Propellants - The PLDS transducers delivered a re  designed 

4. Compatibility - All portions of the PLDS that will be exposed 

to propellants a re  constructed of 300 series stainless steels and 

offer long-term chemical resistance to these propellants. 

The high flow warning system has a first order time constant of 

0.6 seconds at fu l l  flow. If a large leak suddenly occurs, the 
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alarm will be given within a few milliseconds which is well below 

the 200 milliseconds required. 

5, 

transfer ratio of about 1.3, therefore, the same transducer sizing 

can be used for both fuel and oxidizer. 

O/F  Ratio - The O/F ratio of 2.0 is equivalent to a heat 

6. 

300 psi will cause no problems. 

Operating Pressure - The operating pressure range of 100 to 

7. 

temperatures ranging f rom 0 to 140°F. 

satisfactorily over the 20°F to 85OF range of temperatures ex- 

pected during a normal duty cycle. 

Operating Temperature - The system will not be damaged by 

The system will operate 

8. 

fittings designed for testing with standard 3/4-inch line sizes. 

design is easily adaptable to installation in 3/4-inch and 5/8-inch 

RCS plumbing by using fittings or  by welding, 

Line-Size - The transducers delivered had standard -12 end 

The 

9. 

rates expected during RCS operation. 

Flow Rates  - The transducers a re  designed to cover the flow 

10. 

PLDS shall compromise the reliability of the RGS. 

ducer reliability can be as  good as  the reliability of the line length 

it r eplace s . 

Fail-safe - The PLDS is designed so that no failure in the 

The trans- 
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11. Component Packaging - The components of the PLDS are  

separated into transducers (for installation in the propellant flow 

system) and electronics for signal conditioning. The transducers 

a re  propellant-compatible and the electronic system can be de- 

signed for switching between many transducers. 

Bb 

The PLDS developed will detect both the small leaks associated with valves 

RCS Failure Modes to be Detected 

improperly seating and the large leaks associated with valves failing open 

and with line failures. 

cb Design Specifications 

1. Pressure Drop - The pressure drop through the PLDS trans- 

ducers can be less than 1% of the operating pressure. 

2. 

insensitive to pressure. 

zero leak indication which is inherently unaffected by temperature. 

Temperature compensation can easily be provided if desired in the 

high flow warning system. 

Pressure and Temperature Variations - The PLDS is inherently 

The low flow warning system provides a 

3. 

the range from 20 cc/hour and above 15,000 cc/hour. 

considerably exceeds the Work Statement requirements. 

Duty Cycle - The low flow detection system can detect leaks in 

This range 

The high flow leakage warning system covers the flow range speci- 

fied and can be designed for O / F  ratio detection using the trans- 

ducers and circuit techniques developed. 
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4. 

system is of the order of one minute from system initiation to 

warning. 

Response Time - The response time of the low flow detection 

This is ten times faster than the 10 minute requirement. 

The high flow warning system has a first order time constant of 

0.6 seconds at full flow. If a large leak suddenly occurs, the 

alarm will be given within a few milliseconds which is well below 

the 200 milliseconds required for 60 cc of leakage. 

5. Spacecraft Disturbances - The spacecraft disturbances ex- 

pected do not contain a directed acceleration component of appre- 

ciable duration and will not disturb the operation of the low flow 

detection system. 

6. 

pears satisfactory. 

Location 0 The planned location of the leak sensing package ap- 

7. 

at about 1.6 watts for  either the low or high range system. A dual 

fuel and oxidizer system would therefore consume 3.2 watts. 

though this is less than the 5 watts allowed for the high range 

system and certainly less than the 25 watts allowed for the low 

range system, the power consumption could be reduced still fur- 

ther if desired. 

Power Requirements - The prototype PLDS required 28 volts 

Al- 

8. 

245,000 hours and is fail-safe with respect to the RCS. 

Reliability - The prototype system has an estimated MTBF of 
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9. 

about 460 grams. 

version. 

about 12 cubic inches. 

reduced by employing the welded cordwood construction technique 

used for other Spacelabs flight electronic hardware. 

Weight and Volume - The prototype transducer weights were 

This could easily be cut in half in a production 

The electronic system weighed 346 grams and occupied 

The size of the electronics could be greatly 

10. 

operation have been developed, 

Component Development - The components vital to system 

11. Radiation - The PLDS should function properly in the presence 

of normal interplanetary radiation levels. 

12. Propellant Leakage - The transducer body and the inner tubing 

assembly both form separate redundant welded enclosures and pre- 

vent propellant leakage over the range of temperatures and pres- 

sures expected. 

13. 

a 6 G environment and wi l l  withstand 80 5 GIs. 

Acceleration - The high flow warning system will perform in 

14. 

after potting. 

Shock - The system will withstand the applicable shock loading 

15. 

ment specified after potting. 

Vibration - The system will withstand the vibration environ- 

Specific Requirements 

A. A prototype PLDS has been developed and tested. It provides the 
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specified sensitivity over the range of environments, integration require- 

ments and design specifications outlined in the Statement of Work. 

1. Prototype Leak Detector Development - The leak detection 

devices and control electronics have been designed and fabricated 

in finished breadboard form. 

2. Leak Alarm Subsystem Development - The PLDS checkout unit 

provides leak alarm displays and is suitable for use in demonstra- 

tion tests. 

3. 

conducted on the prototype PLDS and have proven the capabilities 

of low and high leak detection and the feasibility of providing O / F  

ratio out-of-limit indication. The equipment comprising the pro- 

totype PLDS was delivered on schedule. 

Demonstration Tests and Delivery - Evaluation tests have been 

B. 

solved. 

The technical problems of meeting PLDS requirements have been 

C. This report completes the reporting requirement. 

D. 

fabrication of a full-scale optimized system under a later program. 

Sufficient knowledge has been generated to enable the design and 
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EXPERIMENTAL PROGRAM 
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I EXPERIMENTAL PROGRAM 

An extensive experimental program w a s  conducted to help identify problem areas 

and to measure the value of various approaches to the leak detection problem, 

Early tests of transducers using the variation of heat transfer coefficient as a 

measurement of flow rate indicated serious problems at the low end of the flow 

range. These problems were associated with the fluid velocities due to free con- 

vection being much higher than the flow velocities being measured. Conventional 

electrothermal flowmeters, therefore, do not exhibit adequate sensitivity to 

detect leak rates of 25 cc/hour and are  extremely position sensitive. Figure 30 

is an example of the low flow performance of a conventional electrothermal flow- 

meter design using a circumferential heater-sensor winding. It can be seen that 

the convective effects make the flowmeter unusable at very low flow rates. 

output characteristic actually goes down for increasing flow between 0 and 

400 cc/hour when the meter is oriented with the flow axis horizontal. 

The 

The problems encountered during these early tests pointed out a need for a dif- 

ferent approach to the low leakage measurement problem. After analysis of the 

data and heat transfer relationships, it was decided to t ry  a new low flow mea- 

surement technique. The method selected measures the temperature differential 

between two points located equal distances from a heated element. The measure- 

ment points are  symmetrically located upstream and downstream from the heated 

element. 

influences of gravity and other disturbances. 

The symmetry provides a zero signal at zero flow, independent of the 

The first thermal differential transducer tested consisted of two bead thermistors 

located in a z 1 inch apart. inch outer diameter copper tube and spaced about 2 
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A resistor was installed between the two thermistors and the assembly was sealed 

with epoxy, 

taken of output current as a function of flow rate, 

Figure 31. Although the performance of this first thermal differential transducer 

was somewhat erratic due to imperfect sealing of the electrical connections, the 

sensitivity at  low flow rates was encouraging but not as high as expected from 

the analysis, 

tion, the internal geometry of the meter, and the low temperature rise of the 

r e  sis tor , 

The thermistors were connected in a bridge circuit and data were 

The data a re  presented in 

This w a s  decided to be due to the combined effects of free convec- 

I 

A new transducer was constructed consisting of three glass thermistor probes 

closely spaced along the axis of a 1/2-inch outer diameter copper tube, 

central thermistor was used as a heater and supplied with 113 mw. 

dicated repeatable performance, good sensitivity at low flow rates and a positive 

leakage indication over a wide range of flow rates. Figure 32 shows the perfor- 

mance of this transducer. 

The 

Testing in- 

After conducting further tests on different versions of the thermal differential 

transducer, it was decided to test a configuration in which the heater and ther- 

mistors were enclosed in stainless steel tubes mounted across the flow stream, 

This configuration was selected because it could serve as  the basis of a practical, 

propellant compatible design. 

ducer. 

range of leakage rates from 25 cc/hour through 1800 cc/hour. The output signal 

r ises at  low flow rates as the temperature differential between the upstream and 

downstream measurement points increases. At flow rates above 800 cc/hour, 

the magnitude of the signal begins to decrease as the cooling effect of the flow 

Figure 33 presents the performance of the trans- 

The output signal provided suitable flow indication over the specified 
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reduces the temperature of the heater. However, the leakage indication is more 

than adequate even at flow rates several times the required 1800 cc/hour. 

individual temperatures of the upstream and downstream sensors were also mea- 

sured. 

moving heat source analysis was used to estimate the theoretical low flow thresh- 

old of the transducer in the absence of free convection. 

The 

These data were used in conjunction with an analytical study in which 

Since the thermal differential transducer with elements enclosed in cross-stream 

tubes appeared to provide a practical approach to the low leakage rate detection 

problem, the experimental program was directed toward the establishment of a 

configuration for a high range transducer. 

from 1000 cc/hour to 0-88 lbs/second, and would provide leakage detection and 

O/F ratio monitoring. 

This transducer would cover the range 

A transducer was made by winding heater and sensor windings around the periph- 

ery of a stainless steel tube, 

0.026 inches. The nominal diameter was 3/4-inch. 

duced to approximately 0.005 t o  0.007 inches over a 1 inch length.. 

and associated downstream sensor were wound in the center of this reduced wall 

thickness segment to limit axial heat conduction through the tube walls. 

windings were impregnated with silicone oil to provide good thermal contact with 

the tube walls. A power of 1.4 watts was applied to the heater and data were 

taken of heater temperature rise above the fluid temperature as a function of flow 

rate. 

included the upstream and downstream sensor windings which were made with 

temperature sensitive (Balco) wire. 

water flow are  presented in Figure 34. 

The nominal wall thickness of the tube was 

The wall thickness was re- 

The heater 

The 

These data were gathered by monitoring the output of a bridge circuit that 

The data for measurement of 55OF and 135'F 
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The heat transfer coefficient variation with flow rate was calculated from the 

temperature rise, heater power and estimated heater surface area. 

shows the variation of heat transfer coefficient with flow rate. 

good agreement with the values predicted analytically. 

Figure 35 

These data are in 

This high range transducer did provide good performance over the required range 

of flow rates and temperates. The low temperature coefficient of the Balco wire 

(0. 45%1°C compared to 3.9%/OC for the thermistors) and the large heater power 

required to raise the temperature of the large heated area a sensible amount were 

felt to be liabilities in the PLDS application. 

A transducer was constructed using thermistor temperature sensors and a re- 

sistance heater enclosed in stainless steel tubes mounted across a 1/2-inch 

copper tube. The surface temperature of the tube containing the heater was 

measured by bonding a thermistor-carrying tube to the surface of the heater tube. 

This technique effectively enclosed the thermistor in an isothermal surface which 

was at the same temperature as the surface of the heater. 

selected after experiencing difficulty with other methods of measuring heater 

temperature. 

between the tube wall and the fluid is so low that any measurement technique in 

which much of the heat passes through the temperature sensing thermistor makes 

the thermistor temperature insensitive to flow. This precludes placing the ther- 

mistor in the same tube with the heater. 

This approach was 

The problem arises because the value of heat transfer coefficient 

Data were taken showing the performance of this transducer while measuring 

flow rates of 55'F and 135OF water, The data show adequate sensitivity for de- 

tecting leaks of 

tem flow rates. 

1000 cc/hour combined with the ability to measure full RCS sys- 

These data a re  presented in Figure 36. 
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The next step in the experimental program was to fabricate and test pre-prototype 

transducers made from the same materials as those contemplated for the end-item 

hardware. 

thermal properties (such as stainless steel instead of copper) would not degrade 

the performance of the low and high flow transducers. 

Such tests would ensure that the change to materials with different 

The elements for low and high range leakage measurements were installed in a 

single 3/4-inch outer diameter stainless steel tube. 

0.026 inches. The thermistors and resistors were installed in cros8-stream- 

mounted tube8 of approximately 0.100 inch outer diameter and 0.010 inch wall 

thickness. These smaller tubes were mounted in place with epoxy. 'The nearer 

and downstream sensor tubes for the high flow sensor were also joined together 

with epoxy. 

The tube wall thickness was 

The first test data taken with the low flow sensing system are  presented in 

Figure 37. 

The sensitivity at low flow rates was lower than desired so it was decided to in- 

vestigate the influence of changing the heater power in the hope that the sensitivity 

might be increased. A series of tests was conducted in which the change in out- 

put current from the low flow sensing bridge was recorded as the flow rate was 

increased from 0 to 600 cc/hour. 

power levels. 

crease in heater power level sometimes caused a decrease in flow sensitivity. 

The sensitivity versus power relation began to deviate from the expected straight 

line at  about 100 milliwatts for 55' water temperature and at even lower power 

levels when the water was heated to 130°F. 

This was done for a number of different heater 

The resulting data a re  presented in Figure 38 and show that an in- 
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Analysis of the experimental data. led to the conclusion that the anomalous be- 

havior was due to the influence of free convection. 

were calculated and found to be much higher than the flow velocities being mea- 

sured. 

free convection. Raising the heater power tended to increase the free convection 

by increasing the temperature difference available to drive convection currents. 

Increasing the fluid temperature changed the fluid properties and also increased 

the free convection. 

The free convection velocities 

A small change in velocity due to flow was masked by the effects of the 

Although free convection would not affect the performance of the low range sys- 

tem in its intended gravity-free service environment, it w a s  decided to limit the 

free convection so that the calibrations and system performance would more 

closely resemble the expected zero-G performance. Thin convection baffles 

were then fabricated and located on each side of the heater to prevent free circu- 

lation of the heated fluid in non-axial directions. 

The low range system was then retested. 

Figure 39 and show the expected marked increase in sensitivity at low flow rates. 

Some free convection effects were still present (as indicated by the decrease in 

sensitivity at high temperatures) but the sensitivity of the transducer in the range 

of temperatures expected was more than adequate. 

The resulting data a re  presented in 

The high range section of the pre-prototype transducer was then tested over the 

range of flow rates from 0 to 10,000 cc/minute. The resulting data a re  presented 

in Figure 40 and indicate satisfactory performance in both leakage and RCS flow 

ranges (Appendix C shows that the properties of the propellants a re  such that the 

propellant flow rate which corresponds to  the same output signal as a given water 

B - 7  



I 
I 
I 
I 
I 
I 
I 
I 
I 
I. 
I 
I 
I 
I 
I 
I 
I 
I 
b 

'T I I 

I 

I 
ai  I 

I 

/ 



I 
Z D  . I  

1 

1 
/ 3  



flow rate is approximately twice a8 great). Figure 40 also shows that the effects 

of changing fluid temperature were moderate and within the range of easy com- 

pensation. 
I- 

The performance of both the low and high range systems in the 

tube were considered satisfactory and it was therefore decided 

prototype transducers would be fabricated and evaluated. 

3/4=inch stainless 

that deliverable 

I 
I 
I 
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I ’  

This Appendix contains some of the more important 

analytical studies performed during the program. 



I 
I 

I .  
t 
t I 

I 
I 

BASIC PERFORMANCE ANALYSIS 

I Lowest Flow Range - 25 cc/Hr - 35 cc/Hr 

Fuel - A. 

A t  25 cc/Hr through a 3/4" ID pipe, the Reynolds number of the fuel is: 

4 x 25 x 0.898 
nx8.17 x 1O0'xO.75x2.54 

crn3gram Hr poise cm sec 
Hr cm3 poise cm 3600 s e c g t a m  

The nominal Prandtl number of the fuel is:  

The Nusselt Number is: 
0.0665 (Re Pr $ d 

1 t 0.04 (Re Pr ;)'' 3 NU = -k hd 5 3.65 -t 

For: 

d - = 10 
X 

W e  have: 
d R e  Pr ( z ) w  510 

and 
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The heat transfer coefficient is then: 

0.1505 BTU 12 4*60m Hr Ft"F Ft 

BTU - HrFt 2 = 11.1 - - 
The characteristic length for heating the fluid to 63% of the wall to st ream 

difference is: 

Substituting for h 

= 0.0543 Re Pr 

For the present case: 

= 0.0543~ 0 , 5 1 0 ~  10 

= 0.277 

(3)F 

Or: 

Thus, for a heater on the order of 75 mils in length, the meter will behave 

substantially as a Laub Meter and not as a Thomas Meter. The power 

c - 4  



input will be(at 10'F differential) 

BTU WxO.'?5x0.075X10 in20F 1000 mw 
E 11.1 3.413 BTU/hr Hr FtLeF 144in2/Ft2 

B. oxidizer 

At  35 cc/Hr through a 3/4" ID pipe, the Reynolds number of the oxidizer 

is: 

I 4 x 35 x 1.432 
n x 0.410 x l o g L  x 0.75 x 2-54 x 3600 

The nominal Prandtl number of the oxidizer ie: 

d Re Pr 2.27 x 5 x 10 

= 113.5 - - - 
0.0665 x 113.5 

1 + (0.04 x 113.5L'3) 
= 3.65 + 

NuO 

7.548 = 3-65 +'- 

= 7.5s = - 
- - 7.55  x 0.0755 x 12 

hO 0.75 

BTU = 9 12 L -7 - Ft Hr - 
C - 5  



= 0.375 

3 - - 9.12 x IT x 0.75 x 0.075 x 10 x 10 
Qo 144 x 3.413 

= 24.0 milliwatts - - - 
II Malfunction Condition 

A. Fuel - 1350 cc/Hr 

= 27.540 ReF 

d Re Prz 2754 

- 0.75 x 27.54 x 10 
'F - 24.35 

BTU ~ _ _  
58 76 i! hF - H r F t  

= 154.6 milliwatts 'F - 
7 
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B. Oxidizer - 1700 cc/Hr 

Reo = 110.3 - - 
d RePrT; = 5513 

= 30.85 - - 
= 0 . 7 5 x  1 1 0 . 3 x 5  

0 30.85 

BTU 
& '-2 - HrFt 

ho = 37 3 - 
= 98.0 milliwatt6 - - qo - 

III FullFlow - 

A. Fuel - 0.44 #/set 

- ReF - 0.44 x 4 #/sec x 12"/Ft 
---#--- n x 0.75" x 8.17 x 10" Cp x 6.72 x 10 SecFt 

The flow is turbulent. From Diessler,  we see that: 

NuAv = 2.36Nu- 

For: 
d Pr 3 10 and R e  = 16,000 and ' j~  10 
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the Dittua-Baslter Equation gives: 

- hd = 0.0243 Reoo8  Pr 0. 4 Nuo - T 

= 143 
= 338 NuAvJ = 

BTU h = 812.8 - FtLHr 

= 2.14 watts qF - - - 
B. Oxidizer - 0.88 #/sec 

- Reo - 4 x 0.88 x 12 
n x 0.75 x 6.72 x loo4 x 0.41 

65,066 - 
= 2.20 N NuAV 

0.4 = 0.0243 Pr 
N'O 

= 327.6 

P 720.7 NuAv - - 
BTU ho f 871 - - - Hr Ft' 

= 2.29 watt8 - - qo - 
IV Heat Leaks 

A. Radial Heat Leak 
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k Q s -  A A T  
X 

I f  air is the insulator and x 0.1 inches 

0.015 x r x  0.75 xo. 75 BTU 
0.0083 Ft 144 Hr Ft O F  inL 3.913 BTU 

Ft in2 10bF lOOOmw Hr Q =  

B. Axial  Heat Leak Through Fuel 

The problem is to develop a significant value of 1. The exact approach 

would involve describing the entire thermal picture including axial and 

radial conduction. As an approximation, we will assume that 1 2 do 

Q ( 1 0 ~ d t  + 0 . 1 5 g d )  n 2 AT 

0.75" BTU 1- loo3 Q 30 14 x 10' (10 X- + 0.15 x 
12 1 2 g x 4  H r F t  

1000 mw/hr 
x3,813 T T r  

3 Q = 9 .2  x 10 (0.883 -t 2.34) x log3 

This is equal to the low threehold signal. 

C. Axial Heat Leak Through Oxidizer 

loo3 + 0.0755 x 0.75 1000 
12 x 4 ' 3 x 3  Q = 3.14 x 10 (10 X'T 

This is camparable to the threshold signal. 
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EFFECT OF FLUID PROPERTIES IN TURBULENT FLOW 

Steady Flow Nusselt Number 

The heat transfer coefficient will depend primarily on the Reynolds number and 

the Prandtl number of the flow. 

value of h, but the effect of L/D does not change greatly with Re o r P r  in 

The L/D of the heated section will affect the 

turbulent flow. 

of Re Pr (.$. d 

fn laminar flow the heat transfer coefficient is a direct function 

The first step in evaluating the effect of varying fluid properties is to examine 

the equations for h and the variation of Re and Pr over the range of ambient 

conditions expected. For  steady turbulent flow Eckert and Drake give: 1 

00 4 Nu = 0.0243 Re" * Pr 

This does not include the effects of L/D, but does indicate the effect of Re and 

Pr variation. 

Hausen gives an expression for average Nusselt number which does include the 

effects of L/D, but does not reduce to the Dittus-Boelter Equation (1) for large 

L/D. 

0.14 

Nu =: 0.116 (Re 2'3- 125)  PI-^'^) ( 2) 

This expression also accounts for the viscosity at the wall being different from 

the bulk values. Although Equations (1) and (2) are not quite the same, the effect 

Eckert, E. R. G o ,  and R. M. Drake, Jr. , Heat and Mass Transfer, McGraw- 
Hill Series in Mechanical Engineering, 195% 
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of varying fluid properties is Virtually identical in both equations. 

I N2°4 1 , 50% UDMH-N2H4 

h - cc 
h77 

! h /  k CP 
T i  ! 

k CP I c c  

I 
I b 

CP - 1 BTU/inSec"F BTU/#, cp - ' BTU/Hr BTU/# 
OF  Ft°F "F 

9 

77 0.07SS I 0. 368(a) 0.410 1.000 I 0 . 3 4 6 ~  loo5 0.694 1 0. 86(a) 1.000 

40 0.0809 0.357 0.499 0.951 I 0.350 0.685 1.16 0.887 

0.704 0.76 1.053 
1 I 

100 0.0715 0.376 0.342 I 1.050 i 0.344 

140 I 0.0620 I 0.393 ' 0.260 1.095 1 0.3395 10.715 0.59 1 1.164 

I 
, 

b I 

Fluid Properties 

The significant fluid properties for the present application can be grouped from 

Equation (1) as: 

-- 

The required temperature range for the propellants is from their melting points 

which are about 20°F to 140°F. 

The properties of Nt04  and 50% UDMH-NZH4 are  tabulated below. 

I 

FLUID PROPERTY VARIATION 
TABLE I 

We see from Table I that the effect on heat transfer coefficient of fluid property 
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I 
variation in the turbulent regime w i l l  be on the order of 7.5% for Nz04 and 16% 

for 507~  UDMH-N2H4. 

temperature compensation may be possible. It should be noted that the effective 

variation in flow rate will be greater than the variation of h, since the flow rate 

comes into the Nuseelt Number expression to the 0.8 power. The overall effect 

on computed flow rate will be about 9.5% for N204 and 20% for 50% UDMH-N,H4 

based on the average properties. 

The effect is described by a smooth curve, so that 

The effect of varying fluid properties on laminar flow are  much less than for 

turbulent flow, since viecosity effects drop out. 

G -  12 . 



I .  
PROPELLANT TO WATER CONVERSION FACTORS FOR TURBULENT FLOW 

This analysis calculates the water flow rates which will give the same signal 

as the expected RCS flow rates. The proportionality between heat transfer and 

the flow and fluid properties ia  given by: 

k 8 31 h +*a 

This may be written: 

The flowmeter signal will  be identical for propellant and water flows provided 

that the heat transfer coefficients are  the same. If h/hw = 1, we may write: 

For the oxidizer at 77°F: 

kw = 4.6 k 

C - 13 



Combination of these ratio6 with Equation (2) nhows that 0,88#/sec of N204 

may be simulated by 0.27#/eec of water flow. 

Converting the equivalent water flow to cc/minute: 

7380 cc/min 0.27#/eec x 1604 cc’F3 x 1728 in 3 3  / f t  x 60 tmin 

62.4#/ft 

For the fuel at 77’; 

J1 - 0.86 
P W  

k 
T = 2.333 

= 1,44 
P 

Proceeding as before, we find that 0.44#/eec of N2H4 may be simulated by 

0.207#/sec of water flow (5630 cc/minute). 
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I .  
FREE CONVECTION VELOCITY I .  

This analysis provider an estimate of the free convection velocities in the PLDS 

sensor s . I 

I 

I 

Eckert and Drake (Ref. 1) gives the maximum velocity in the boundary layer 

around a heated vertical plate as: 

I 
11 2 x -112 

7 = 0.766 f l  (0.952 i Pr) *ma 

Where: 

P ie the kinematic viecoeity 

Pr i e  the Prandtl number 

g 

6 i 8  the expansion coefficient 

8 ir the wall temperature 

X 

ie the acceleration due to gravity 

is the heated length for free convection 

I This may be written: 

1/2 @1/2 x1/2 
( 8  8) 

-112 = 0.766 (0.952 +Pr) 

I For water at 68'F: 

Pr 7.02 

p = 10-*OR-l 

C - 15 



= 0.766 (7.9?2I1lt (32.2 x 10 -4 ) 1/2  (a x)1/2 'mw 

Or : 

'mu 0.0154 (6X)1'2 

For water at 140 OF: 

Pr = 3.02 

112 
'msx 0.766 (3,972) -'I2 (32.2 x 10 -4 ) lJ2  (ex) 

Or : 

For a heated length of 0.6 inches and a temperature rise of 1O0F, the free 

convection velocities are: 

0.011 ftlsec at 68'F 'mu 

0.0155 f t / s ec  at 140.F max U 

The equivalent water flow rates in a 0.6 inch d i m t a r  tub are @wan by: 

At 68'F: 
2 

Q = 0.011 x 3600~----.6--- ' x 1728 x 16.4 
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I .  or: 

I Q 2220 cc/hour 

Similarly, at 140.F: I 
I 
I 
I 
I 

Q = 3100 cc/hour 

The introduction of baffleo will reduce these equivalent flaw rates by the quare 

root of the ratio of the unobstructed distance before and after baffling. A 100 

to 1 reduction in the factor (ex)  will  reduce the free convection flow rate 

equivalents to 222 and 310 cc/haur. 

Ref.  1: Eckert, E. R.G. and Drake, R.M. e ''Heat and Mase Tranefer." 

McGraw-Hill, 1959. 
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SUBMERGED ELEMENT ANALYSIS 

A. 

The use of glass beaded thermistors a8 temperature sensors f o r  the leak meter 

Single Bead Thermistor Cooling Data 

is being considered. In order to obtain some data on the characteristics of these 

devices, a test was conducted to determine the temperature of the thermistor 

immersed in a stream of water as a function of flow. The data are tabulated 

below in Table I. The details of the test are  described elsewhere by Spacelabs 

personnel. The only significant detail for analysis of the data is that the tube 

has a nominal inside diameter of 0.500 inches and the thermistor bead has a 

nominal diameter of 0.060 inches. 

Flow 
Q 

cc/Hr. 

0 

64 

1,105 
2,800 

7,000 

13,300 

Power 
P 

Milliwatts 

97.0 

96.0 
98.5 

100.0 
99.7 

99.5 

Temperature 
AT 
" C  

30 
28 
27 

21 
14 
13 

Apparent Heat 
Tr ansf er  Coefficient 

B TU /Hr Ft2 OF 

72.4 

76.7 

81.7 
106.0 

162.0 
172.0 

h0 

TABLE I 

THERMISTOR BEAD DATA 
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B. Background Analysis 

The thermal circuit here consists of two resistances in series. There is a 

temperature drop between the core of the bead and the surface. There is 

another temperature drop between the surface and the fluid. If we call \ the 

"conduction coefficient" and hs the surface coefficient, then: 

The "conduction coefficient" is related to the structure of the bead. If the glass 

coating goes from radius Itall to radius "btl with a thermal conductivity "k 'I, 
g 

then the heat flux will  be: 

So that the conduction coefficient will be: 

k 

4nb'hT b-a b 
s r q . r a  A hk 

The external heat transfer coefficient depends on the properties of the flow. 

Fuchs gives a preferred form for a sphere in air of: 

McAdams shows a preferred form for fluids of: 

0.5)  Nus = Pro. (0.97 + 0.68 R e  

C -  19 
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C. Interpretation of the Data 
1 By plotting the experimental AT versus- we can obtain an estimate of the bead Q '  

temperature limit as Q-m. This is  done in Figure 1. It is seen in Figure 41 

that as the flow increases, the temperature differential between the bead and the 

stream approaches 10.4"C. This corresponds to a value of ho 
2 Ft OF. 

so that ho -\. Thus we must estimate that: 

215 BTU/Hr 

Examination of the previoue equations shows that as Re-=, h - = D  
S 

BTU \ = 215 
Hr Ft2"F 

This corresponds to a value of I1d1 of about 0.019 inches. Having a value of \' 
we can now find h8 and plot it against Reynolds Number. Tkis is done in Figure 

42, based on the values tabulated in Table II. 

Nu - S 
h - 0 

Q Re h - - 
0 0.0 72.4 109 1.55 

64 0.41 76.7 119 1.70 
'1,105 7.15 81.7 132 1.89 
2,800 18.1 106.0 209 2.99 
7 ,000  45.2 162.0 657 9.36 

13,300 86.0 172.0 861 12.3 

TABLE XI 

The data in Figure 4 shows a moderate agreement with the theoretical values at 

both ends of the test range. 

normally expected in this kind of data. 

This is comparable to the degree of correlation 
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m U ? O R  LXPERIIIENTAL DATA 

TEXPERATURE RISi- .  VERSUS HEAT F L U A  

I 1 1 I 
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I 

D. Significance of the Results 

The importance of the test  results is almost immediately evident from the 

temperature differential versus flow data. A t  low flows the bead sees a measur- 

able change in temperature at the level of flow rates of interest and the low leak- 

age rates. The bead ftsaturateall at flow much less than the 10 cc/Hr which 

corresponds to the high flow signal. This saturation is due to the thermal 

resistance between the core of the bead and it8 surface. Internally generated 

heat may be useful for low flows, but is ruled out for high flow applications in 

the form tested here. 

6 

E, Three -P robe Meter 

An experimental leak detector was designed and tested which used a central 

heater and two thermistors as shown in Figure 43. Each of the elements was 

encased in a steel hypodermic tube as indicated. Thermal contact between the 

elements and the tube wall was obtained by uee of a silicone grease, 

An analysis was conducted to establish the approximate characteristics of the 

meter. The first question was to find the approximate temperature which would 

be achieved using the meter in a stagnant fluid. 

estimate the velocity effect on the meter. 

The second question was to 

F. 

An approach to estimating both the static and dynamic behavior of the meter was 

to assume that it acted like a source of heat moving through the fluid. 

permits us to use existing solutions to that problem. Jakob shows that when a 

source of heat moves along a thermal conductor which has heat loss to the 

Moving Source of Heat on a Line 

This 
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surroundings, the temperature distribution around the source is given by: 

T Tmax e -(a+b)x for x c  o 

e +(a-b)x for x< o max T = T  

Where: 

h - heat loss  coefficient 

C - circumference at loss surface 

A - cross-section for heat flow 

x - distance upstream of the source 

The maximum temperature is related to the total heat flux by: 

G. Zero Velocity 

A t  v = 0, the maximum temperature becomes: 

t 9  
Zkm T max 

The temperature variation with position becomes: 

-mx e max T = T  
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The properties of the tube can be obtained by combining the properties of the 

fluid and the wall. Thus: 

- - kwAw + kt Af 
keff *f 

Where: 

- effective conductivity of the tube 

- wall conductivity 

kf - fluid conductivity 

keff 

kW 

- wall cross-section 

Af - fluid cross-section 

- tube total cross-section AT 

Similarly= 

For a copper tube with water inside and: 

= 0.500 inches dT 
df 0.450 inches 

B TU 
O D 3  H r  Ft'F 



From McAdams h for a l /  2 inch pipe combining free convection and radiation is 

appr oximately: 

B TU 
H r  Ft2"F 

h -  2 

For the unit tested, the heat input was: 

q = 500milliwatts 

1.7 BTU/Hr 

Solving for Tmax: 

= 7,3'F Tmax 

This agrees well with the measured data. For this condition we also have: 

m = 2.23 f to l  

so that no significant drop in temperature would be expected in the fraction of an 

inch which separates the probes, 

H. Response to Flow 

The moving source equations unfortunately do not strictly apply to the present 

case when flow occurs. Thie is because the source of heat moves with respect 

to the water, which comprises about 415 of the thermal mass, but is stationary 

with respect to the wall, Direct solution of the exact differential equations was 

felt to be beyond the scope of the present effort. An estimate was made, however, 

of the range of velocities which would be significant in altering the temperature 

die tr ibution. 
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Maximum Estimate 

If the wall were moving with the stream, but the probes were 

stationary, we would have: 

m = 2.23 Ftol 

o! = 0.6345 Ft Hr 2 -1 

Then the velocity term would be comparable to the heat loss term 

when: 

v = 2 a m  

3 2.02FtIHr 

This corresponds to a flow of Q = 88 cc/Hr 

Minimum Estimate 

If the wall were not only stationary, but also isothermal or non- 

conducting axidly, acting to carry the lost heat to the Outside, 

the heat loss to the wall would have a Nusselt Number of 4 

(this is typical for developed laminar pipe flow). 

Then: 
4kf = 23 BTU 

hw =_df Hr FtLoF 

But since the ultimate 1OSS is to ambient, this wall  coefficient 

is in series with the previous value of h =: 2, so that the overall 

coefficient corrected for circumference is: 

h 0 2.03 
0 
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Using the water properties alone: 

m = 26.9 Ft” 

a = 5 x loo3 Ft2/Hr 

v = 2am 

3 0,269 F t / H r  

which corresponds to a flow of: 

Q = 0.4 cc/Hr 

In either case, it appears clear that the effects of flow on the 

temperature distribution w i l l  become evident at flow rates near 

the low leakage limit. 
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